Handling Concurrent API Calls in Spring Boot
When building Spring Boot applications, handling concurrent API calls efficiently is crucial to ensure optimal performance and scalability. Here are a few approaches to manage concurrent read and write operations:
Handling Concurrent Read API Calls #
Asynchronous Methods #
Using @Async
at @Service
annotation and enabling asynchronous processing can help handle multiple API calls concurrently.
@Async
public CompletableFuture<String> asyncMethod() {
// Call external API
return CompletableFuture.completedFuture("Result");
}
WebClient with Reactor #
Spring WebFlux’s WebClient allows for reactive programming, making it easier to handle multiple API calls.
Mono<String> firstApiCall = webClient.get().uri("http://example.com/api1").retrieve().bodyToMono(String.class);
Mono<String> secondApiCall = webClient.get().uri("http://example.com/api2").retrieve().bodyToMono(String.class);
return Mono.zip(firstApiCall, secondApiCall)
.map(tuple -> tuple.getT1() + " " + tuple.getT2());
ExecutorService #
Using ExecutorService
allows for creating a pool of threads to manage concurrent calls.
private final ExecutorService executorService = Executors.newFixedThreadPool(10);
public CompletableFuture<String> makeConcurrentCall() {
return CompletableFuture.supplyAsync(() -> "Result", executorService);
}
Parallel Streams #
Java 8’s parallel streams can perform API calls in parallel.
return Stream.of("http://example.com/api1", "http://example.com/api2")
.parallel()
.map(url -> "Result from " + url)
.collect(Collectors.toList());
Handling Concurrent Write API Calls #
Handling concurrent write operations, such as updates, requires careful management to ensure data consistency. Here are a few strategies:
Synchronized Blocks #
Using synchronized blocks ensures that only one thread can execute a block of code at a time.
public synchronized String updateData(String url, Object data) {
return webClient.post().uri(url).bodyValue(data).retrieve().bodyToMono(String.class).block();
}
Optimistic Locking #
Optimistic locking uses versioning to handle concurrent updates, ensuring data consistency.
class Item {
// Other fields
@Version
private Long version;
}
public Item updateItem(Item newItem) {
return repository.save(newItem);
}
@Transactional with Retry #
The @Transactional
annotation combined with retry mechanisms can handle transaction conflicts. This is also used in @Service
layer.
@Transactional
@Retryable(value = {OptimisticLockingFailureException.class}, maxAttempts = 3, backoff = @Backoff(delay = 500))
public Item updateItem(Item newItem) {
return repository.save(newItem);
}
Distributed Locks #
Using distributed locks like Redis ensures that only one service instance can perform the update at a time.
RLock lock = redissonClient.getLock("updateLock");
lock.lock();
try {
// Perform the write call
} finally {
lock.unlock();
}
By employing these techniques, concurrent API calls within a Spring Boot application can be efficiently managed, thus ensuring optimal performance and maintaining data integrity.